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Abstract. We propose a simple parameterization of the two-point correlator of hadronic electromagnetic
currents for the evaluation of the hadronic contributions to the muon anomalous magnetic moment. The
parameterization is explicitly done in the Euclidean domain. The model function contains a phenomeno-
logical parameter which provides an infrared cutoff to guarantee the smooth behavior of the correlator at
the origin in accordance with experimental data in e+e− annihilation. After fixing a numerical value for
this parameter from the leading order hadronic contribution to the muon anomalous magnetic moment, the
next-to-leading order results related to the vacuum polarization function are accurately reproduced. The
properties of the four-point correlator of hadronic electromagnetic currents as for instance the so-called
light-by-light scattering amplitude relevant for the calculation of the muon anomalous magnetic moment
are briefly discussed.

1 Introduction

The description of strong interactions based on QCD
proves to be very successful for processes at large energies
where the coupling constant is small due to the property
of asymptotic freedom [1]. This makes perturbation the-
ory (PT) computations reliable. At low energies the prob-
lem of strong coupling prevents using QCD as an unam-
biguous theoretical tool for computations of physical ob-
servables and various phenomenological models are intro-
duced. These models are inspired by QCD but it is difficult
to establish a quantitative relation between the underly-
ing theory and a model used in practice. For instance, the
chiral perturbation theory (ChPT) for Goldstone modes
is a very general model in the sense that this effective the-
ory provides the expansion of the full QCD amplitudes at
low energies according to symmetry principles without us-
ing special assumptions. In this respect the amplitudes of
ChPT represent the low-energy limits of the exact QCD
amplitudes based on current algebra and collect the cur-
rent algebra results in a compact way [2]. Of course, for
the applicability of ChPT one should guarantee that the
expansion in the energy is well convergent (at least explic-
itly). ChPT is very practical in describing interactions of
pions (as lightest hadrons) with nucleons or resonances at
low energy in the small momentum (and mass) expansion
[3,4]. Thus the description of strong interactions at low
energies relies on phenomenological models with explicit
introduction of elementary hadron fields or on the closely

related approaches based on general principles of analyt-
icity, unitarity and symmetry [5]. A general idea of linking
this approach for the description of hadrons at low ener-
gies with QCD is the concept of duality, which means that
the description of inclusive observables which are sensitive
to the contribution of many particles is simpler than that
of exclusive processes and can be represented by almost
free fermions or weakly coupled quarks [6]. This concept
works well for infrared (IR) soft observables in τ -decays
and other sum rules where the limit of massless quarks
is nonsingular [7–12]. For the IR sensitive observables the
realization of the duality concept for the light modes is not
quite straightforward since the IR cutoff explicitly enters
the calculation. In such cases the IR cutoff is usually taken
from experiment, for instance the mass of a real hadron.

Strong interactions at low energies play an important
role in precision tests of the standard model as a whole.
They are involved in the evaluation of the CP -violating
structure in the electroweak sector through hadronic ma-
trix elements, the computation of which constitutes a main
obstacle for the progress of a quantitative analysis of the
nonleptonic kaon decays relevant for determination of the
quark mixing matrix [13,14] and mixing of neutral pseu-
doscalar states [15]. In other tests of the standard model
strong interactions enter as small corrections to very accu-
rately measured observables. Examples of high precision
observables of the standard model with important con-
tributions from strong interactions (as corrections to the
leading leptonic effects) are the running electromagnetic
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(EM) coupling constant at the scale of the Z-boson mass
and the muon anomalous magnetic moment (MAMM).
The numerical values of these quantities put some con-
straints on the standard model parameters and can also
serve as triggers of new physics beyond the standard
model.

A numerical value of the muon anomalous magnetic
moment (MAMM) is measured experimentally with high
precision [16,17]. The value presented in a recent review
[18] reads

aexpµ = 116 592 023(151) × 10−11, (1)

with an uncertainty of 151× 10−11. In future experiments
a goal is set to reach the accuracy of 40×10−11. In theoret-
ical computations the leading contribution to the MAMM
is given by

aSchwµ =
α

2π
, (2)

(first calculated by Schwinger), where α is the fine struc-
ture constant α−1 = 137.036 . . . [16]. The MAMM is sen-
sitive to the IR region of integration in perturbation the-
ory diagrams. For the leptonic (QED) part of the con-
tribution this is reflected in a strong dependence on the
electron mass. Theoretically the purely leptonic part is
computed in perturbative QED with finite lepton masses,
which leads to a function A(me/mµ,mµ/mτ ) which is
known analytically to three loops. As me � mµ � mτ

the ratios me/mµ and mµ/mτ are small and the function
A(me/mµ,mµ/mτ ) can be expanded in these ratios to
simplify calculations. The contribution of the muon leads
to diagrams with a single scale mµ that makes it simpler
to compute. The complete analytical calculation is techni-
cally very complicated already at the level of three loops
[19]. The nontrivial diagrams in higher orders were com-
puted numerically [20,21]. The present value of the QED
contribution to the muon anomalous magnetic moment
reads [22,23] (for a review see [18])

aQEDµ = 116 584 705.7(2.9) × 10−11. (3)

The computation of the electroweak (EW) corrections to
the MAMM has also been performed in perturbation the-
ory [24]. The EW contribution is now known with two-loop
accuracy (for a review see [18]),

aEWµ = 152(4) × 10−11. (4)

The hadronic contribution to the MAMM is sensitive to
the infrared region and cannot be computed in perturba-
tive QCD with light quarks. The current masses of light
quarks are too small to provide a necessary infrared cut-
off and explicit models of hadronization are required for a
quantitative analysis [25–27]. The hadronic contribution
is the main uncertainty in the theoretical computation of
the MAMM in the standard model. Assuming the validity
of the standard model for the description of elementary
particle interactions

aexpµ = aSMµ , (5)

the numerical value for the hadronic contribution to the
MAMM in the standard model is given by

ahadµ |as = aexpµ − aQEDµ − aEWµ (6)

= (7165.3 ± 151|exp ± 2.9|QED ± 4|EW)10−11.

The experimental error dominates the uncertainty.
Since the hadronic contribution is sensitive to the de-

tails of the strong coupling regime of QCD at low energies
and cannot be unambiguously computed in a perturba-
tion theory framework the theoretical prediction for the
MAMM in the standard model depends crucially on how
this contribution is estimated [28]. In the absence of a re-
liable theoretical tool for the computation in this region
one turns to experimental data on low-energy hadron in-
teractions for extracting a numerical value [29]. In gen-
eral terms the hadronic contribution to the MAMM is de-
termined by the correlation functions of electromagnetic
(EM) currents. Since a source for the EM current is readily
available for a wide range of energies, one tries to extract
these functions or some of their characteristics relevant for
a particular application from experiment. Without explicit
use of QCD the correction ahadµ in the standard model is
generated through the EM interaction ejhadµ Aµ, with jhadµ

being the hadronic part of the EM current. At the leading
order (α2 in formal power-counting) only the two-point
correlation function of the EM currents emerges in the
analysis of hadronic contributions to the MAMM. At the
next-to-leading order (α3) a four-point correlation func-
tion appears. These correlators are not calculable pertur-
batively in the region essential for the determination of
the hadronic contributions to the MAMM. The leading
contribution to the MAMM comes from the two-point cor-
relator referred to as the hadronic part of the photon vac-
uum polarization contribution, while the four-point func-
tion first emerges at the α3 order, most explicitly as the
light-by-light scattering amplitude. To avoid using QCD
in the strong coupling mode one can extract the neces-
sary contribution to the MAMM by studying these two
correlation functions experimentally without an explicit
realization of the hadronic EM current jhadµ in terms of el-
ementary fields. Another possibility which is close in spirit
is to use phenomenological models to saturate these cor-
relators with contributions of real hadrons at low energies
[22,30–33]. There is also a possibility to use a concept
of duality between hadron and quark–gluon descriptions
modified for handling IR sensitive observables [34,35]. In
the following we discuss this last option.

2 Hadronic contribution at leading order

At the leading order in α the hadronic contribution is
described by the correlator

i
∫

〈Tjhadµ (x)jhadν (0)〉eiqxdx = (qµqν − gµνq
2)Πhad(q2)

(7)
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Table 1. Comparison of a selection of different determinations of the leading
order contribution to ahad

µ in the literature. For the first five lines the first column
indicates the reference, the second column the cited value. In the third column
the leading order contributions from heavy quarks are subtracted. The sixth and
seventh line show the optimistic and conservative estimate for the mean value. The
fourth and fifth column list the resulting values for meff and mq for model 1 and
model 2, respectively

Reference ahad
µ (LO) ahad

µ (LO; light) meff [MeV] mq [MeV]

[28] 7011(94)× 10−11 6940(96)× 10−11 200.5(1.6) 178.7(1.4)
[36] 7024(154)× 10−11 6953(155)× 10−11 200.3(2.5) 178.5(2.2)
[38] 6950(150)× 10−11 6879(151)× 10−11 201.5(2.5) 179.6(2.2)
[39] 6924(62)× 10−11 6853(65)× 10−11 201.9(1.1) 180.0(1.0)
[29] 6988(111)× 10−11 6917(112)× 10−11 200.9(1.8) 179.0(1.6)

optimistic 6961(43)× 10−11 6892(44)× 10−11 201.3(0.7) 179.4(0.6)
conservative 6979(114)× 10−11 6908(116)× 10−11 201.0(1.9) 179.2(1.7)

Fig. 1. The leading order hadronic contribution to theMAMM,
the shaded bubble indicates the hadronic two-point correlator

in terms of a single function Πhad(q2) of one variable
q2. The contribution of Πhad(q2) to the muon anomalous
magnetic moment (e.g. [37]) is given by

ahadµ (LO) = 4π
(α
π

)2 ∫ ∞

4m2
π

ds
s
K(s)ImΠhad(s) (8)

with a one-loop kernel of the form

K(s) =
∫ 1

0
dx

x2(1 − x)
x2 + (1 − x)s/m2 . (9)

Here ImΠhad(s) = Im{Πhad(q2)|q2=s+i0}, m is the muon
mass.

The leading order hadronic contribution to the MAMM
as depicted in Fig. 1 is represented by an integral over the
hadron spectrum and no specific information about the
function ImΠhad(s) is necessary point-wise. However, a
QCD approach based on light quark duality in the mass-
less approximation is not directly applicable as the inte-
gral in (8) is IR sensitive and depends strongly on the
threshold structure of the function Πhad(q2). In most ap-
plications the threshold structure is extracted from exper-
iment. To the leading order in α the function ImΠhad(s)
can uniquely be identified with data from e+e− annihila-
tion into hadrons. Introducing the experimental Rexp(s)
ratio

Rexp(s) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

, s = (pe+ +pe−)2, (10)

and identifying it with the theoretical quantity 12πIm
Πhad(s) one finds

ahadµ (LO) =
1
3

(α
π

)2 ∫ ∞

4m2
π

Rexp(s)K(s)
s

ds. (11)

The contribution to the MAMM based on the representa-
tion given in (11) is well studied. Several recent determi-
nations based on a thorough treatment of various sets of
data are given in the second column of Table 1. All values
given in Table 1 are consistent within errors. We can take
only a small selection of results because other results are
again within errors but with mean values slightly differ-
ent. For the same reason, the old historical result given
in [28] could be cited as well. Table 1 gives two different
mean values, namely an optimistic and a conservative av-
erage. The optimistic average uses the error estimates of
the different results as weights, assuming that the results
are independent. Here we use the method presented in
Sect. 4.3 of [36]. But because all treatments in the litera-
ture are mainly based on the close data sets taken for the
analysis, this assumption might not be true. Therefore, we
also give a conservative average which reads

ahadµ (LO) = 6979(114) × 10−11. (12)

This average is in agreement with the experimental re-
sult in (6) within error bars. The statistical correlation
of errors coming from the experimental value in (1) and
the leading order hadronic data in (12) is supposed to be
small as they are determined by different sources. Other
errors are negligible. For the target experimental error of
the MAMM at the level of 40×10−11 [22] the value in (12)
is somewhat small and NLO hadronic corrections should
be taken into account. In order to obtain a naive order-
of-magnitude estimate for this contribution, we take the
value of the leading order suppressed by α ≈ 1/137 which
gives roughly 50 × 10−11. Writing

ahadµ |th = ahadµ (LO) + ahadµ (NLO)

and comparing with (6) one has (in units of 10−11)
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ahadµ (NLO)

= 7165 ± 151|exp ± 2.9|QED ± 4|EW − 6979(114)|LO
= 186 ± 151|exp ± 2.9|QED ± 4|EW ± 114|had. (13)

Assuming the statistical independence of the uncertainties
one finds after adding them in quadratures

ahadµ (NLO) = (186 ± 189) × 10−11, (14)

which would not allow one to see higher order hadronic
effects clearly. Assuming that the mean value of aexpµ in
the planned experiment will not change and the target
accuracy 40×10−11 will be reached, one finds a numerical
value for the NLO hadronic contribution of

ahadµ (NLO) = (186 ± 121) × 10−11, (15)

which makes the NLO hadronic effects noticeable at the
level of two standard deviations. If the mean value of aexpµ

will change in the range of the present experimental un-
certainty of 151 × 10−11, the NLO hadronic effects can be
more or less pronounced.

To create a framework for the analysis of hadronic con-
tributions at NLO based on duality arguments we rewrite
the LO expression for the hadronic contribution to the
MAMM given in (8) in a different form. From general
principles a two-point correlator Π(q2) as a function of
the complex variable q2 can have a cut along the posi-
tive semiaxis s > 0 with a positive discontinuity [40]. This
spectral condition plays a crucial role in the analysis of
the structure of the two-point correlators and related ob-
servables [41,42]). The dispersion relation reads

Π(q2) =
1
π

∫ ∞

0

ds
s− q2 ImΠ(s) − subtractions. (16)

For massive pions the experimental spectrum in e+e− an-
nihilation starts from 4m2

π and the subtraction at the ori-
gin is possible as ImΠhad(s) = 0 for s < 4m2

π. The disper-
sion representation with subtraction at the origin reads

Πhad(q2) =
q2

π

∫ ∞

4m2
π

ds
s

ImΠhad(s)
s− q2 (17)

which implies the normalization condition Πhad(0) = 0.
Using (16) and (17) and (8) and (9) one can rewrite the LO
contribution to the MAMM as an integral over Euclidean
values of q2 for Πhad(q2),

ahadµ (LO) = 4π2
(α
π

)2 ∫ ∞

0

{−Πhad(−t)}W (t)dt, (18)

with

W (t) =
4m4

√
t2 + 4m2t

(
t+ 2m2 +

√
t2 + 4m2t

)2 . (19)

Such a representation is well known and is often written
as a parametric integral [43,44].

Fig. 2. The LO Euclidean weight function F (t)

The representation in (11) is suitable for the evalua-
tion of the hadronic contributions to the MAMM by using
experimental data, since it can be rewritten in terms of the
hadronic cross section for e+e− annihilation. The repre-
sentation in (18) is more suitable for a theoretical study
as perturbation theory should preferably be applied in the
Euclidean domain. Integration by parts in (18) gives

1
π

∫ ∞

4m2
π

ds
s
K(s)ImΠhad(s)

=
∫ ∞

0

(
−dΠhad(−t)

dt

)
F (t)dt,

F (t) =
∫ ∞

t

W (ζ)dζ (20)

with

F (t) =
1
2

(
t+ 2m2 − √

t2 + 4m2t

t+ 2m2 +
√
t2 + 4m2t

)

=
2m4(

t+ 2m2 +
√
t2 + 4m2t

)2 . (21)

The behavior of the function F (t) is shown in Fig. 2 for
small and large t. It reads

F (t)|t→0 =
1
2

−
√
t

m
+O(t), F (t)|t→∞ =

m4

2t2
+O(1/t3).

(22)
The surface terms of the integration by parts vanish be-
cause the integrand in (18) satisfies the conditions

|Πhad(−t)| < C(t1/2) at small t

and
|Πhad(−t)| < C ′t−2 at large t

with some given constants C, C ′.
A key physical quantity of the analysis is the derivative

of the hadron vacuum polarization function dΠhad(−t)/dt
which is closely related to the Adler function

D(t) = −tdΠ
had(−t)
dt

. (23)



S. Groote et al.: An interpolation of the vacuum polarization function 397

The quantity dΠhad(−t)/dt can be computed in pertur-
bative QCD with massless quarks for large t,

−dΠhad(−t)
dt

=
e2qNc

12π2t

(
1 +

αs(t)
π

)
, (24)

where eq is the charge of the quark in units of the ele-
mentary (electron) electric charge and Nc is the number
of colors. Computation at small t in perturbation theory
is not possible for light quarks with small masses as the
theory enters the regime of strong coupling. The behavior
of the function dΠhad(−t)/dt for small t can be extracted
from experiment where the lower limit of the spectrum
is determined by the finite pion masses. This leads to a
finite value for the function dΠhad(−t)/dt at t = 0. Using
the patterns of small and large t behavior of the function
dΠhad(−t)/dt for the light modes, we suggest an interpo-
lation function f(t) valid for all t in the form

−dΠhad(−t)
dt

=
e2qNc

12π2
f(t), f(t) =

1
t+∆

. (25)

Writing

f(t) = −dp(t)
dt

(26)

one has

p(t) = ln
(

∆

t+∆

)
, p(0) = 0. (27)

The analytic properties of the function p(t) are given by
the cut along the positive semiaxis starting at s = ∆. The
discontinuity across the cut is equal to one,

r(s) =
1
π

Imp(−s− i0) = θ(s−∆). (28)

Thus the contribution to the MAMM contains an integral

I(∆) =
∫ ∞

0
f(t)F (t)dt, (29)

which is the basic quantity for the theoretical analysis.
The analytical expression for I(∆) is available but too
cumbersome to be presented here. This expression is used
in numerical calculations. However, in order to understand
the integral in (29) more deeply, in particular, to find
where the integral in (29) is saturated or what region of
integration is important, an approximation can be useful
and worth mentioning. The constant approximation for
the function f(t),

fappr(t) = const = f(0) =
1
∆

(30)

gives

Iappr(∆) = f(0)
∫ ∞

0
F (t)dt = f(0)

m2

3
=
m2

3∆
. (31)

This result represents the leading term of the series expan-
sion of I(∆) for small m2. The series expansion of I(∆)
for small m2 up to terms of order m6 is given by

I(∆) =
1
3
v +

(
19
24

+
1
2

ln v
)
v2 +

(
77
30

+ 2 ln v
)
v3 + . . .

(32)

Fig. 3. NLO contributions to the MAMM involving the contri-
bution of the hadronic two-point correlator (left) and a lepton–
hadron type (so-called double bubble) diagram (right)

with v = m2/∆. This series converges nicely for small
values of v.

The interpolation is only necessary for the light modes
since the small t behavior is nonperturbative. Heavy
quarks can be treated in perturbation theory as their
masses are rather large [16,45,46]. The contribution of c
and b quarks to the MAMM reads [35]

ahadµ (LO; heavy) = 71(18) × 10−11, (33)

where we used mc = (1.6 ± 0.2) GeV and mb = (4.8 ±
0.2) GeV. The uncertainty mainly results from the uncer-
tainty in the c quark mass. Using this result, the light
mode contribution becomes

ahadµ (LO; light) = ahadµ (LO) − ahadµ (LO; heavy)

= 6908(116) × 10−11. (34)

The values for the different cited values are shown in the
third column of Table 1. Using this experimental result
one finds a numerical value for the IR parameter ∆ of
the interpolation function f(t). Writing ∆ = 4m2

eff one
obtains

meff = 201.0 ± 1.9 MeV. (35)

The individual results are shown in the fourth column
of Table 1. The function r(s) of (28) is depicted in Fig. 5
for meff = 201 MeV. This completes the quantitative de-
scription of the interpolation function for the two-point
correlator of the light modes which can be used for the
computation of the hadronic contributions at NLO. We
cite this interpolation as model 1 in the following.

3 Hadronic contribution
at next-to-leading order

The interpolation given by the function f(t) for the two-
point correlator with the numerical value of the phe-
nomenological parameter from (35) is now used at NLO.
Two of the NLO diagrams involving the hadronic two-
point correlator are shown in Fig. 3. The NLO contribu-
tion is an integral of ImΠhad(s) with the two-loop kernel
K(2)(s),

ahadµ (NLO) = 4π
(α
π

)3 ∫ ∞

0

ds
s
K(2)(s)ImΠhad(s). (36)

The analytical expression for the kernel K(2)(s) is known
[47].
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Assuming that the IR scale Mh of the hadronic spec-
trum ImΠhad(s) is larger thanm one can use an expansion
of K(2)(s) in m2/s under the integration sign in (36) to
generate an expansion in m/Mh for the integral. The IR
scale of the data is set by the explicit cutoff at s1/2 = 2mπ.
Then one generates an expansion of ahadµ (NLO) in m2/m2

π

using the data. The data-based analysis for the NLO ef-
fects of the vacuum polarization type [48] gives

ahadµ (vac; NLO) = −101(6) × 10−11. (37)

In the proposed model the analysis is based on the explicit
expression for the hadronic two-point correlator given in
(25). In the model the hadronic scale is given by ∆1/2 =
2meff and the expansion of the kernel results in the expan-
sion of the integral in the variable m2/∆ or m2/m2

eff . Note
that convergence is not fast for the hadronic scale given
by mπ or meff . The integral in (36) can be rewritten in
the Euclidean domain for Πhad(q2) in analogy to the LO
treatment. For our purposes it suffices to use the expan-
sion in m2/s. We present some contributions separately
for a comparison with the results from [48].

The vertex part of the kernel has an expansion [48]

K(2)
ver(s) = 2

m2

s

{(
223
54

− π2

3
− 23

36
ln
( s
m2

))

+
m2

s

(
8785
1152

− 37π2

48
− 367

216
ln
( s
m2

)
+

19
144

ln2
( s
m2

))

+
m4

s2

(
13072841
432000

− 883π2

240
− 10079

3600
ln
( s
m2

)

+
141
80

ln2
( s
m2

))
+ . . .

}
. (38)

Generally, the terms of the expansion contain powers and
logarithms of the variable m2/s. For pure powers one can
use a generating integral representation with a polynomial
P (x):

m2
∫ 1

0

dxP (x)
m2x+ s

=
m2

s

∑
n

an

(
m2

s

)n

,

an =
∫ 1

0
dxP (x)(−x)n. (39)

A given polynomial P (x) restores the pure power expan-
sion of (38). For the logarithmic part the generating inte-
gral representation can be chosen with a polynomial G(x)
of the form

m2
∫ 1

0

dxG(x)
sx+m2 = G1(m2/s)+G2(m2/s) ln

( s
m2

)
. (40)

The polynomial G(x) generates polynomials G1(x), G2(x)
through (40). The mixture of pure powers due to the poly-
nomial G1(x) leads to a redefinition of the polynomial
P (x) in (39). Using (36) and (39) one finds the expression
for the pure power part of the expansion

1
π

∫ ∞

0

ds
s
K(2)(s)|powerImΠhad(s)

=
∫ 1

0

dx
x
P (x)[−Πhad(−m2x)] (41)

which reduces to derivatives of Πhad(t) at the origin and
gives the analytic part of the expansion in m/Mh. For the
logarithmic part one finds the representation

1
π

∫ ∞

0

ds
s
K(2)(s)|power logImΠhad(s)

=
∫ 1

0
[−Πhad(−m2/x)]G(x)dx, (42)

which is sensitive to the entire Euclidean domain and
gives the nonanalytic part of the expansion containing
ln(m/Mh). This procedure can be performed up to any
finite order in m2 and the whole calculation can be or-
ganized in a way such that only Euclidean values of mo-
menta are necessary for Πhad(q2). Derivatives of the func-
tion Πhad(t) at the origin emerging from (41) depend on
the hadronic scaleMh while the muon mass enters polyno-
mially. The integral in (42) depends on both the hadronic
scale and the muon mass. The behavior of Πhad(q2) in
the Euclidean domain is smooth and perturbative at large
momenta. The region near the origin q2 = 0 is a nonper-
turbative one. Thus, the basic objects that emerge in the
analysis are derivatives of the function Πhad(t) at the ori-
gin and integrals of the form

∫ ∞

m2

dt
tn
Πhad(−t) lnp

(
t

m2

)
. (43)

One can use this technique to avoid any reference to the
physical region.

In model 1 given by (25) and (27) the explicit interpo-
lation function p(t) is given in the whole complex t-plane.
Therefore, it makes no difference how one computes the
necessary integrals either in the Minkowskian or in the
Euclidean domain. At the formal mathematical level the
calculation with an explicit function can be performed in
the spectral representation alone. The Euclidean approach
will lead to the same formal results. For the calculation of
the basic objects emerging in the spectral representation

Mn,p(∆) = ∆n

∫ ∞

∆

ds
sn+1

lnp
( s
m2

)
, (44)

the recurrence relation

Mn,p(∆) =
1
n

lnp(∆/m2) +
p

n
Mn,p−1(∆) (45)

can be used to decrease a power of the logarithm in the
integrand of (44). The results for the first two powers of
the logarithm are

Mn,0(∆) =
1
n
, Mn,1(∆) =

1
n

ln(∆/m2) +
1
n2
. (46)

Writing the analytical expression for the NLO vertex con-
tribution to the MAMM in the form

amod
µ (ver; NLO; analyt) =

(α
π

)3
V (m2/∆) (47)
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(the index “mod” stands for model 1, “ver” represents the
vertex contribution in Fig. 3 left) one finds

V (v) =
v

9

(
377
18

− 2π2 +
23
6

ln v
)

+
v2

9

(
23647
1152

− 37π2

16
+

677
144

ln v +
19
48

ln2 v
)

+ o(v2), (48)

where o(v2) is any function that satisfies limv→0 o(v2)/
v2 = 0. For brevity we have explicitly presented only two
terms of the expansion of the function V (m2/∆) at small
m2/∆ resulting from the corresponding expansion of the
kernel in (38). The result of evaluating the u, d, s light
mode contribution obtained from (47) and (48), together
with the appropriate QCD group factor Nc(e2u +e2d +e2s) =
2 reads

amod
µ (ver; NLO; light; analyt) = −191 × 10−11. (49)

The numerical integration of the kernel given in (38) re-
sults in the value

amod
µ (ver; NLO; light) = −190(2) × 10−11, (50)

to be compared with the corresponding results from the
model of [35] which is based on the use of free massive
fermions for computation of the interpolation function,

amod
µ (ver; NLO; light) = −188 × 10−11. (51)

The total contribution of the vertex type including the
heavy quarks reads

amod
µ (ver; NLO) = −194(3) × 10−11, (52)

to be compared with the one obtained in the data-based
approach [48]

a[48]µ (ver; NLO) = −211(5) × 10−11. (53)

Note that the leading order contribution used in [48] is
different from the value in (34). Therefore the direct com-
parison should be made with some caution. In fact, the
value used for the LO contribution in [48] is larger than
the value in (34) which would result in a smaller value of
meff and consequently the larger value of the NLO vertex
correction in the model calculation given in (49) and (50).
Nevertheless, the difference is within the error bars.

For a mixed contribution of the lepton–hadron type
(so-called double bubble (“db”) diagram) shown on the
right hand side in Fig. 3 we find

amod
µ (db; NLO; lept + had) = 106(2) × 10−11, (54)

while the data-based estimate reads

a[48]µ (bd; NLO; lept + had) = 107(2) × 10−11. (55)

Thus, the results obtained with the interpolation model
given in (25) and (27) reproduce those obtained in the
data-based approach.

Fig. 4. The LO and NLO kernels K(s) and K(2)(s)

The result for the total NLO hadronic contribution of
the vacuum polarization type (two-point correlator only)
is

amod
µ (vac; NLO) = −86.5(0.7) × 10−11, (56)

which has to be compared with the result shown in (37).
All contributions, including the leading order contribu-
tions which reproduce the input of the determination of
meff are listed in the second column of Table 2.

The model given in (25) and (27) reproduces rather
accurately the results for the NLO hadronic contributions
found in the data-based analysis for the graphs related to
vacuum polarization. This was expected as these results
are obtained by the integration of the two-point function
with the NLO kernel K(2)(s) which has a structure very
close to that of the leading order kernel K(s). These two
functions are shown in Fig. 4.

4 Alternatives for the model spectral function

The interpolation function for the two-point correlator of
hadronic EM currents in (25) is very simple. One can use
more sophisticated interpolations. A formal criterion for
the choice of the interpolation is its consistence with gen-
eral principles of quantum field theory (analyticity and
unitarity in this case). A practical criterion is its simplic-
ity such that analytical calculations become technically
feasible. One can turn to free field models in a search for
mathematical functions that can be used in the interpo-
lation procedure. For instance, the scalar or fermionic po-
larization functions with masses as free parameters can be
taken as suitable candidates. The fermionic interpolation
function was considered in detail in [35]. It is given by the
expression

π(t,mq) =
(

1
3z

− 1
)
ϕ(z) − 1

9
, (57)

ϕ(z) =
1√
z

artanh(
√
z) − 1, z =

t

4m2
q + t

.

The discontinuity across the cut (4m2
q,∞) at t = −s− i0

is given by the fermionic spectral density of the form
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Table 2. The different vacuum polarization type LO and NLO contributions for model 1
(second column), model 2 (third column), and model 3 (fourth column). The values for
the effective masses for model 1 and model 2 are taken as meff = (201.0± 1.9)MeV and
mq = (179.4 ± 0.6)MeV respectively; the cited uncertainties are a consequence of the
uncertainties of these effective masses and of the masses of the heavy quarks. The error
estimates due to these two sources can be added quadratically

Contribution model 1 model 2 model 3

amod
µ (LO; light) 6908(114)× 10−11 6908(114)× 10−11 6578× 10−11

amod
µ (LO; heavy) 71(18)× 10−11

amod
µ (ver; NLO; light) −189.5(2.4)× 10−11 −188.2(2.4)× 10−11 −183.2× 10−11

amod
µ (ver; NLO; heavy) −4.3(0.9)× 10−11

amod
µ (db;NLO; light) 105.0(1.7)× 10−11 104.9(1.7)× 10−11 100.0× 10−11

amod
µ (db;NLO; heavy) 1.1(0.3)× 10−11

amod
µ (vac;NLO) −87.7(0.7)× 10−11 −86.5(0.7)× 10−11 −86.4× 10−11

ρq(s) =
1
3

√
1 − 4m2

q

s

(
1 +

2m2
q

s

)
. (58)

A pictorial representation of ρq(s) is shown in Fig. 5. The
two functions f(t,meff)/3 and −dπ(t,mq)/dt coincide
within 1% accuracy in the interval t = (0,m2

q) if the effec-
tive parameters are related through meff/mq = 51/2/2 ≈
1.12. This is expected from duality considerations based
on the shape of the discontinuity across the cut given in
(28) and (58). Since the integral in (29) is saturated at
the scale of the order of the muon mass t1/2 ∼ mµ and
mµ < meff , the closeness of the integrated interpolation
functions implies a rather accurate equality of the result-
ing integrals. The generalization to interpolations based
on scalar field theories is straightforward. The interpola-
tion given by the spectral density in (58) will be referred
to as model 2 in the following.

At this stage it seems that hadrons have completely
disappeared from the analysis and some artificial func-
tions are rather arbitrarily used to compute the relevant
integrals. The link to physics is that for such a kind of in-
clusive observables as the MAMM which are sensitive to a
contribution of many hadrons the analysis can completely
be done in the Euclidean domain with the only IR sensi-
tive contribution coming from the region near the origin.
In the Euclidean domain the contribution of all hadrons
to the MAMM is smeared to the extent which is deter-
mined by the distance between the integration region and
the nearest physical singularity. The hadronic singularity
is taken from experiment as a two-pion cut with the kine-
matical constraint s > 4m2

π. The integration, in fact, is
sensitive to scales t1/2 ∼ 2mµ. Therefore, a correctly nor-
malized function (as for duality at large energies) with the
appropriate IR behavior in the interval 0 < t < 4m2

µ repro-
duces the data with reasonable accuracy. The IR behavior
is mainly determined by the experimental scale 4m2

π.
To illustrate this statement let us consider a more re-

alistic interpolation for the vacuum polarization function
in the Euclidean domain from the point of view of exper-
imental hadron physics than those described so far. The

Fig. 5. s-dependence of the spectral functions ρ1(s) = r(s) of
model 1 in (28) and ρ2(s) = 3ρq(s) of model 2 in (58) (upper
diagram), as compared to the spectral function ρ3(s) = ρhad(s)
for model 3 in (59) and (62). We use meff = 201MeV, mq =
179MeV, and the central values mρ = 769.9MeV and Γρ =
150.2MeV [16]

model hadron spectrum for light modes can be chosen in
the following simple form:

ρhad(s) = 2m2
ρδ(s−m2

ρ) + θ(s− 2m2
ρ). (59)
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This is a one-scale no-parameter model that satisfies the
duality constraints from the operator product expansion
[7,8,49]. The hadronic scale of the model is given by the ρ-
meson mass mρ which is eventually fixed from experiment
[16]. We neglect small violations of flavor symmetry for the
u, d, s light modes and consider them to be degenerate.
The spectrum from (59) gives an interpolation function of
the form

fhad(t) =
2m2

ρ

(t+m2
ρ)2

+
1

t+ 2m2
ρ

. (60)

The value of the interpolation function fhad(t) at the ori-
gin t = 0 reads

fhad(0) =
5

2m2
ρ

. (61)

It should be compared with the value from (30). For mρ =
769.9 MeV one finds fhad(0) = 4.22 GeV−2, while the data
give f(0) = 1/∆ = 6.25 GeV−2. This is fairly reason-
able given the simplicity of the model but is not accu-
rate enough. Note that there is no single free parameter
in the model given in (59) and the shape of the spectrum
is fixed from the duality constraint at large energies. The
weight function F (t) from (20) and (21) determining the
MAMM integral can resolve the behavior of the interpola-
tion function fhad(t) for the hadron correlator at the scales
of order mµ = 105.66 MeV. However, the approximation
of an infinitely narrow resonance in (59) is too rough for
computing such an integral. Thus, the low-energy behav-
ior of the spectrum is not precise enough, which leads to
an insufficient accuracy of the interpolation function at
small t. Formally this is seen in the absence of the scale
4m2

π which is known to be important for the evaluation
of the integral in the data-based analysis. Therefore the
spectrum from (59) should be corrected for this particular
application. A dominant role in the data-based analysis is
played by two-pion states. The ρ-meson is a resonance in
the two-pion system, therefore its contribution effectively
takes into account the pion singularity as well. However,
the zero width approximation is not good enough for com-
puting the particular integral in (20). A natural modifi-
cation of the spectrum is to introduce a finite width for
the ρ-meson. This is achieved by replacing the function
δ(s−m2

ρ) by the Breit–Wigner function for the resonance
part of the spectrum in (59):

ρhadR (s) =
2m2

ρ

π

Γρmρ

(s−m2
ρ + Γ 2

ρ /4)2 + Γ 2
ρm

2
ρ

, (62)

ρhadΓ (s) = θ(s− 4m2
π)θ(2m2

ρ − s)ρhadR (s) + θ(s− 2m2
ρ).

The interpolation function based on this spectrum will
be called model 3 in the following. Figure 5 shows the s-
dependence of ρhadΓ (s). The expression for the resonance
part of the spectrum reduces to 2m2

ρδ(s−m2
ρ) in the limit

Γρ → 0. Using the Breit–Wigner form of the spectrum
for the region 4m2

π < s < 2m2
ρ one finds the contribu-

tion of the resonance to the interpolation function in the
Euclidean domain:

fhadR (t) =

2m2
ρ∫

4m2
π

ρhadR (s)ds
(s+ t)2

. (63)

The interpolation function in the Euclidean domain for
the spectrum with nonzero width reads

fhadΓ (t) = fhadR (t) +
1

t+ 2m2
ρ

. (64)

Computing the value of the interpolation function at the
origin for Γρ = 150.2 MeV [16] one finds

fhadΓ (0) = fhadR (0)+
1

2m2
ρ

= 5.15+0.84 = 6.0 GeV−2 (65)

instead of the result (61) obtained in the infinitely narrow
resonance approximation. The number from (65) differs
from the data-based estimate f(0) = 1/∆ = 6.25 GeV−2

by 4% only. Note that no free parameters have been used
so far for the description of the hadron spectrum. The
integrals entering the MAMM as in (29) are also rather
close. One finds

Idata = 0.0194, (66)

to be compared with

IhadΓ = 0.0155 + 0.0030 = 0.0185, (67)

where the first term in the sum is given by the resonance
and the second by the continuum contribution. Thus, the
simple and parameter-free model from (62) and (63) al-
ready gives a reasonable precision of about 5% for the LO
hadronic contribution to the MAMM. In this sense it suc-
cessfully incorporates experimental information necessary
for the MAMM computation.

The spectral functions taken for model 1 from (28), for
model 2 from (58), and for model 3 from (62) are shown
in Fig. 5 in order to allow one to compare these models.
Neither model 1 nor model 2 has a discontinuity across
the positive semiaxis of the s-plane resembling the ex-
perimental spectrum. However, both models result in in-
tegrals over the spectrum for the respective kernels which
are very close to the result obtained in the experimentally
inspired model 3 and, eventually, to the data represented
in (66). From the purely mathematical point of view this
is related to the fact that the procedure of analytic contin-
uation is an incorrectly posed problem: small variations of
functions in the Euclidean domain can produce big varia-
tions on the cut. The t-dependence of the Euclidean rep-
resentation by the functions f(t), −3dπ(t)/dt, and fhadΓ (t)
is shown in Fig. 6. A phenomenological interpretation of
the situation consists in a duality between hadrons and
free light fermions with QCD quantum numbers as for
the particular application related to the MAMM compu-
tation. Of course, the main objective of the calculation of
the hadronic contribution at the leading order from ex-
periment is to reach a high precision. The use of direct
data seems to be superior to a parameterization of the
spectrum from indirect observations. However, as soon as
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Fig. 6. The functions fi(t) for the three different models where
f1(t) = f(t) is given by (25), f2(t) = −3dπ(t)/dt is given
by (57) and f3(t) = fhad

Γ (t) is given by (64). We take ∆ =
4m2

eff where meff = 200MeV is used for the upper diagram
and meff = 205MeV for the lower diagram. The parameter mq

used for π(t) is connected to meff by mq = 2meff/51/2. The
values mρ = 769.9MeV and Γρ = 150.2MeV used in fhad

R are
taken from [16]

the integral over the data is computed a smooth inter-
polation function of a simple form can be introduced in
the Euclidean domain to be used in higher order calcula-
tions. Because this interpolation function is explicit and
complies with the general properties of analyticity and
unitarity one can find its discontinuity across the positive
semiaxis and perform further calculations in the spectral
representation as well. The analysis of NLO contributions
along these lines shows that the data-based results are
accurately reproduced [35].

5 Discussion of the light-by-light contribution

Still the class of interpolation models based on field theo-
ries contains more than just a useful set of functions with
suitable properties. It can be used, with some caution,
for extrapolations to higher order correlation functions as
well. Indeed, the interpolation models (27) and (57) suf-
fice for the calculation of the polarization-type hadronic
contributions to the MAMM related to the two-point cor-
relator of hadronic EM currents. For the whole computa-

Fig. 7. The light-by-light contribution (left) and the two-
photon Green function (right) to the MAMM at NLO

tion at NLO one needs a four-point correlator of hadronic
currents. It appears in two instances: as a contribution to
the light-by-light graph and a two-photon Green function
(see Fig. 7). For the contributions to the two-photon Green
function the relevant projection of the four-point correla-
tor depends on one external momentum and the above
discussion is applicable theoretically as the interpolation
function of one complex variable is necessary. There are
no experimental data to fix the IR scale though. For the
light-by-light graph the projection of the four-point corre-
lator relevant for the MAMM calculation is a function of
two independent four-momenta k1, k2.

The scalar form factors g4(k21, k
2
2, (k1 − k2)2) of the

projection of the tensor four-point correlator relevant for
the MAMM computation are given by

i2
∫

〈Txωjhadµ (x)jhadν (y)jhadτ (z)jhadσ (0)〉eik1y+ik2zdxdy dz

=
∑

i

T ω i
µντσ(k1, k2)gi

4
(
k21, k

2
2, (k1 − k2)2

)
. (68)

The functions gi
4 are functions of the three scalar vari-

ables k21, k22, and (k1 − k2)2. Here T ω i
µντσ(k1, k2) are ten-

sor structures which are polynomials in the four-momenta
k1, k2 and the metric tensor gµν . The form factors gi

4 de-
pend on the IR hadronic scale Mh which is related to the
experimental masses of light hadrons (pions). It may ef-
fectively differ from the scale emerging in the two-point
correlator. These IR scales cannot be found theoretically
in QCD as the regime of strong coupling is not treat-
able in perturbation theory. They can perhaps be esti-
mated in some nonperturbative approach as, for exam-
ple, the lattice approximation. The scalar form factors
gi
4(k

2
1, k

2
2, (k1 − k2)2;Mh) are integrated over k1, k2 with

the weight functions w(k1, k2,m) to give a contribution to
the MAMM in a full analogy with the two-point correlator∑

i

∫
gi
4
(
k21, k

2
2, (k1 − k2)2;Mh

)
wi(k1, k2,m)d4k1d4k2.

(69)
The weight functions wi(k1, k2,m) are generated by per-
turbative diagrams and depend on integration momenta
k1, k2 in the loops and on the muon mass m (more pre-
cisely, they depend also on the muon momentum p which
is taken on the muon mass-shell p2 = m2). To the lead-
ing order of expansion in m/Mh the integration in explicit
models reduces to vacuum three loop bubbles which can
be done analytically [50].

The calculation of the integral in (69) within an had-
ronization procedure requires one to establish the analytic



S. Groote et al.: An interpolation of the vacuum polarization function 403

properties of a given form factor gi
4(z1, z2, z3;Mh) as a

function of three complex variables zi. Also one has to sat-
urate the singularities with the contributions of hadrons
in full analogy with the two-point correlator. Then the
integral in (69) is calculated through the discontinuities
on the singularities. In other words, one can use the dis-
persion representation for the form factors gi

4(k
2
1, k

2
2, (k1−

k2)2;Mh) with some spectral density and then integrate
over the momenta k1, k2 explicitly. At this point one is left
with an integral over the whole physical spectrum for the
form factors with kernels obtained after such integration.
Note that this is close to the way how the actual integra-
tion of the light-by-light diagram was done analytically
for leptons where the physical spectrum can be computed
in perturbation theory [19].

While the physical spectrum at low energies cannot
be computed in QCD perturbation theory point-wise, the
integrals over the hadronic spectrum for the three-point
functions are quite accurately calculated in the sum rule
approach based on duality between hadron and quark-
gluon contributions [51]. As one needs only integrals of
the functions gi

4(k
2
1, k

2
2, (k1 −k2)2;Mh) one can avoid con-

structing these functions point-wise. Assuming general re-
quirements of smoothness one can use an interpolation
function in the Euclidean domain. Recently it has been
argued that the neutral pion contribution to the ampli-
tude (69) does not give a singular dominant contribution
by itself in the kinematical region relevant for the MAMM
calculation and can be treated within the duality approach
[35] (see also [52]). This implies that the integration over
the Euclidean domain properly takes into account singu-
larities of the gi

4-functions related both to the pion contri-
bution and two-particle cuts given by the two-pion states.
Thereby all contributions at low energies of the integrand
(spectrum) are taken into account, for example, the ρ-
meson. The integral of the spectrum can therefore be ap-
proximated by an integral of some interpolation function
with an appropriate IR parameter. As the IR scale is set
by the pion mass mπ one would expect a numerical value
of the IR parameter to be of the same order of magnitude.
In contrast to the two-point correlator Πhad(q2) the gi

4-
functions related to the four-point correlator in (68) are
complicated functions of three complex variables, which
makes it difficult to find an appropriate candidate for an
interpolation function obeying all general requirements of
field theory. A simple way to find such an appropriate in-
terpolation is to use a field theory for constructing the
spectrum. The use of a free fermionic theory is just the
way one can generate the interpolation function having
the necessary properties. Indeed, it does not violate any
general principles (gauge invariance, discrete symmetries,
analyticity, unitarity, . . . ) as the finite order perturbative
field theory is about the only realistic field theory that is
known to obey the general principles. One can consider
such an interpolation as an efficient adaptive integration
procedure like the spline technique or Monte Carlo rou-
tine VEGAS [53]. It is not a full-scale approximation of
QCD at low energies that would allow one to compute
the exclusive characteristics of hadrons, i.e. to compute

the functions gi
4(k

2
1, k

2
2, (k1 − k2)2;Mh) point-wise. It is a

way to find integrals of the special type in (69) using du-
ality between quarks and hadrons. Note that the duality
idea between s-channel resonances and Regge trajectories
was very useful in description of hadron scattering before
the invention of QCD. Thus, many model interpolations
are possible in the leading order and give rather accurate
results. However, in the higher orders of EM perturba-
tion theory there are strict constraints on the interpolation
functions that one can use. Indeed, it is difficult to gen-
eralize the models given in (25) and (63) to higher orders
of perturbation theory. The first model is rather artifi-
cial indeed and is not literally realized in any field theory,
while the second requires one to work out the full-scale
hadronization of QCD for the four-point correlator already
at NLO. This is technically difficult as the data-based ap-
proach shows [33,54]. At the same time the model given
in (57) for the two-point correlator can immediately be
extended to any order of perturbation theory in the elec-
tromagnetic interaction as it is a free fermion theory with
mq being an IR regulator. One also knows that this model
is accurate for the LO hadronic contributions with the IR
scale taken from the data. The IR parameter effectively
estimates the distance from the Euclidean domain of inte-
gration to the physical singularities of the hadronic corre-
lation functions. The key physical point of the quantita-
tive analysis of the hadronic contributions to the MAMM
within this approach is that the same parameter meff , or
mq, enters both two-point and four-point correlators. This
is, of course, an assumption which is based on the obser-
vation that the numerical value of this parameter is close
to the pion mass. The absence of the neutral pion pole in
the gi

4 functions is essential for such an assumption to be
valid. The result of the analysis of the total next-to-leading
order hadronic contributions to the MAMM based on the
fermionic interpolation with the same value of the effective
IR scale Mh = mq for the two-point (polarization-type)
and four-point (light-by-light) correlators [35]

amod
µ (NLO) = (85 ± 20) × 10−11 (70)

agrees with the experimental value from (15). Note that
this result includes the explicit contribution of the EM
correction to the polarization function at the NLO, i.e.
the basic normalization quantity obtained from the data
as given in (34) is supposed not to contain this type of
contributions. This can be a rather clumsy arrangement
from the experimental point of view but it is more definite
concerning the theoretical quantities. Numerically the dif-
ference is well within error bars for the LO contribution
though.

If the scalar field theory of charged pions given by the
Lagrangian

Lπ = |Dµπ|2 −m2
ππ

2, Dµ = ∂µ − ieAµ (71)

is used to generate the four-point correlator of hadronic
currents and thereby the form factors gi

4 that enter as in-
tegrands in (69), then the IR scale is explicitly identified
with the pion mass and can be taken from experiment. In
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this case one has to add the contribution of higher reso-
nances to satisfy the duality constraints at large energies
which would make this approach equivalent to the one
based on explicit hadronization. The free fermionic the-
ory with the QCD arrangement of quantum numbers is
exceptional in this sense as it automatically complies with
the duality constraints at large energies. One, of course,
should remember that this is a model and its large energy
behavior is accurate only up to higher order QCD correc-
tions. For the applications of interest this is inessential. A
technical advantage of the fermionic theory is that the an-
alytical results for the MAMM at NLO are available. For
the scalar theory numerical results are available at present
although the calculations can in principle be done analyti-
cally as well since all necessary master integrals have been
found [19,55]. They have already been used in three loop
calculations. According to the hadronization picture the
contributions of the fermionic interpolation functions at
low energies should be substituted by the pionic ones. In
the pure fermionic model with a small effective mass the
replacement of the hadronic contributions by the model
ones is effectively done at rather low energies which makes
the separate contribution of pions small or even vanishing.

6 Summary and conclusions

A parameterization of the photon vacuum polarization
function related to the light hadronic modes is described
in the Euclidean domain. The model contains a single pa-
rameter which is fixed from the experimental result for
the LO hadronic contribution to the MAMM. The model
describes the NLO hadronic contributions of the vacuum
polarization type in agreement with existing estimates.
The calculation of the total NLO hadronic contribution
to the MAMM in a closely related model based on the
fermionic interpolation of correlators of hadronic electro-
magnetic currents is also discussed.

Acknowledgements. We thank K. Chetyrkin for his interest in
this work and useful discussions. This work is partially sup-
ported by the Russian Fund for Basic Research under con-
tract 99-01-00091 and 01-02-16171 and by the INTAS grant.
A.A.P. as well as S.G. gratefully acknowledge grants given by
the Deutsche Forschungsgemeinschaft.

References

1. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973);
H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

2. S. Weinberg, Phys. Rev. Lett. 18, 188 (1967)
3. S. Weinberg, Physica A 96, 327 (1979)
4. J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984);
Nucl. Phys. B 250, 465 (1985)

5. G.F. Chew, The analytic S-matrix (1966)
6. S.L. Adler, Phys. Rev. D 10, 3714 (1974); A. De Rujula,
H. Georgi, Phys. Rev. D 13, 1296 (1976); E.C. Poggio,
H.R. Quinn, S. Weinberg, Phys. Rev. D 13, 1958 (1976);
R. Shankar, Phys. Rev. D 15, 755 (1977)

7. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys.
B 147, 385 (1979); V.A. Novikov, M.A. Shifman, A.I. Vain-
shtein, V.I. Zakharov, Nucl. Phys. B 191, 301 (1981)

8. N.V. Krasnikov, A.A. Pivovarov, A.N. Tavkhelidze, JETP
Lett. 36, 333 (1982); Z. Phys. C 19, 301 (1983)

9. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rept. 127,
1 (1985)

10. E. Braaten, Phys. Rev. Lett. 60, 1606 (1988); S. Narison,
A. Pich, Phys. Lett. B 211, 183 (1988); E. Braaten, S.
Narison, A. Pich, Nucl. Phys. B 373, 581 (1992)

11. A.A. Pivovarov, Sov. J. Nucl. Phys. 54, 676 (1991); Z.
Phys. C 53, 461 (1992); F. Le Diberder, A. Pich, Phys.
Lett. B 289, 165 (1992); S. Groote, J.G. Körner, A.A.
Pivovarov, Phys. Lett. B 407, 66 (1997); Mod. Phys. Lett.
A 13, 637 (1998)

12. P. Colangelo, A. Khodjamirian, hep-ph/0010175
13. A.J. Buras, hep-ph/0109197; S. Bosch, A.J. Buras, M.

Gorbahn, S. Jager, M. Jamin, M.E. Lautenbacher, L. Sil-
vestrini, Nucl. Phys. B 565, 3 (2000); M. Ciuchini et al.,
JHEP 0107, 013 (2001)

14. A.A. Penin, A.A. Pivovarov, Phys. Rev. D 49, 265 (1994);
Int. J. Mod. Phys. A 10, 4065 (1995); J.F. Donoghue,
Nucl. Phys. Proc. Suppl. 96, 329 (2001); J.O. Eeg, hep-
ph/0010042

15. A. Pich, E. De Rafael, Phys. Lett. B 158, 477 (1985); K.G.
Chetyrkin, A.L. Kataev, A.B. Krasulin, A.A. Pivovarov,
Phys. Lett. B 174, 104 (1986); L.J. Reinders, S. Yazaki,
Nucl. Phys. B 288, 789 (1987); J. Prades, C.A. Dominguez,
J.A. Penarrocha, A. Pich, E. de Rafael, Z. Phys. C 51,
287 (1991); J. Bijnens, J. Prades, Nucl. Phys. B 444, 523
(1995); A.A. Ovchinnikov, A.A. Pivovarov, Sov. J. Nucl.
Phys. 48, 120 (1988); Phys. Lett. B 207, 333 (1988); A.
Pich, Phys. Lett. B 206, 322 (1988); S. Narison, A.A. Pivo-
varov, Phys. Lett. B 327, 341 (1994)

16. C. Caso et al. [Particle Data Group Collaboration], Eur.
Phys. J. C 3, 1 (1998); D.E. Groom et al. [Particle Data
Group Collaboration], Eur. Phys. J. C 15, 1 (2000)

17. H.N. Brown et al., hep-ex/0009029, hep-ex/0102017
18. A. Czarnecki, W.J. Marciano, Phys. Rev. D 64, 013014

(2001)
19. S. Laporta, E. Remiddi, Phys. Lett. B 301, 440 (1993)
20. T. Kinoshita, B. Nizic, Y. Okamoto, Phys. Rev. D 41, 593

(1990)
21. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000)
22. M. Hayakawa, T. Kinoshita, Phys. Rev. D 57, 465 (1998)
23. T. Kinoshita, Rept. Prog. Phys. 59, 1459 (1996)
24. S.J. Brodsky, J.D. Sullivan, Phys. Rev. 156, 1644 (1967);

R. Jackiw, S. Weinberg, Phys. Rev. D 5, 2473 (1972); T.V.
Kukhto, E.A. Kuraev, Z.K. Silagadze, A. Schiller, Nucl.
Phys. B 371, 567 (1992); A. Czarnecki, B. Krause, W.J.
Marciano, Phys. Rev. D 52, 2619 (1995); S. Peris, M. Per-
rottet, E. de Rafael, Phys. Lett. B 355, 523 (1995)

25. J. Gasser, H. Leutwyler, Phys. Rept. 87, 77 (1982); S.
Narison, Nucl. Phys. Proc. Suppl. 86, 242 (2000)

26. R. Gupta, K. Maltman, hep-ph/0101132; K. Maltman, R.
Gupta, T. Bhattacharya, Nucl. Phys. A 631, 497C (1998);
T. Bhattacharya, R. Gupta, K. Maltman, Phys. Rev. D
57, 5455 (1998)

27. S. Narison, E. de Rafael, Phys. Lett. B 103, 57 (1981); C.
Becchi, S. Narison, E. de Rafael, F.J. Yndurain, Z. Phys.
C 8, 335 (1981); A.L. Kataev, N.V. Krasnikov, A.A. Pivo-
varov, Phys. Lett. B 123, 93 (1983); Nuovo Cim. A 76,
723 (1983); A. Pich, J. Prades, JHEP 9806, 013 (1998);



S. Groote et al.: An interpolation of the vacuum polarization function 405
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(1998)
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Note added in proof: Recently the authors of [22] have
updated their result concerning the neutral pion contribu-
tion to the light-by-light diagram. While the magnitude of
the numerical value remains the same, the sign of the con-
tribution has been changed [56]. This change brings the
explicit hadron-based result for the light-by-light contri-
bution rather close to that obtained within the duality
approach of [35] which has further been investigated and
developed in the present paper (originally posted at the
hep-ph ArXiv as hep-ph/0111206). Thus, the present the-
oretical result for the muon anomalous magnetic moment
agrees with the current experimental value.


